The nonsplit domination in subdivision graph
نویسندگان
چکیده
منابع مشابه
The convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملNonsplit Dom Strong Domination Number Of A Graph
A subset D of V is called a dom strong dominating set if for every v V – D, there exists u1, u2 D such that u1v, u2v E(G) and deg (u1 ) ≥ deg (v). The minimum cardinality of a dom strong dominating set is called dom strong domination number and is denoted by γdsd. In this paper, we introduce the concept of nonsplit dom strong domination number of a graph. A dom strong dominating set D of a ...
متن کاملNonsplit Domination Edge Critical Graphs
A set of vertices S is said to dominate the graph G if for each v / ∈ S, there is a vertex u ∈ S with u adjacent to v. The minimum cardinality of any dominating set is called the domination number of the graph G and is denoted by γ(G). A dominating set D of a graph G = (V,E) is a nonsplit dominating set if the induced graph 〈V − D〉 is connected. The nonsplit domination number γns(G) of the grap...
متن کاملconvex domination subdivision number of a graph
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملthe convex domination subdivision number of a graph
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2020
ISSN: 0717-6279
DOI: 10.22199/issn.0717-6279-2020-05-0068